The State of New Hampshire
 Before the
 Public Utilities Commission
 Docket No. DT 10-010

PETITION OF BAYRING COMMUNICATIONS FOR LICENSE TO CONSTRUCT AND MAINTAIN A UTILITY CABLE/CONDUIT OVER AND ACROSS THE MERRIMACK RIVER BETWEEN UTILITY POLE CECO 51 AND UTILITY POLE CECO 50.

TO THE PUBLIC UTILITIES COMMISSION:

BayRing Communications, a public utility engaged in the generation, transmission, distribution and sale of telecommunications in the State of New Hampshire, hereby petitions the Public Utilities Commission ("Commission"), pursuant to RSA 371:17, for a license to construct and maintain telecommunication lines over and across the public waters of the Merrimack River in the City of Concord, New Hampshire, and in support of its petition states as follows:

1. In order to meet the reasonable requirements of service to the public, BayRing Communications is proposing to construct a new 216 fiber optic line. The new line will help to accommodate the growth in demand for the Concord Hospital and to obtain a greater level of reliability in the Concord area.
2. The new line will cross the Merrimack River along the northwest side of Federal Bridge - Bridge l-72 "E. Concord" - (Old Bridge \#5).
3. The location of the proposed crossing is shown on the attached location map.
4. The design and proposed construction of the crossing is shown on the attached Dewsnap Engineering Associates LLP Distribution Business Plan Consulting Engineers and Group Inc. Profile drawing entitled "Existing Overhead River Crossing, Plan of Land in Concord, NH".
5. The proposed crossing will occur between two existing Utility poles set approximately 524 feet apart. The existing pole on the north side of the Merrimack River, Utility Pole CECO 51 is approximately 45 feet tall. The existing pole on the south side of the ivierrimack River, Uutiiity Poie CECO 50 is approximately 45 feet tail. The line will be made up of two materials; Conductor nominal diameter 5/16in 7strand steel EHS and 1 non-supporting cable, added diameter $=0.750$ in, weight $=$ $0.124 \mathrm{lb} / \mathrm{F}$ which contains 216 fiber optic. The Strand and non-supporting cable will be sagged using the Heavy Load condition ($0^{\circ} \mathrm{F}$, pounds psf wing loading and $1 / 2^{\prime \prime}$ radial ice) with a maximum tension of 3286 lbs under that load.
6. The flood water elevation for the Merrimack River is based on information from the flood Insurance Rate Map (FIRM), City of Concord, New Hampshire, Merrimack County, Community Panel Number: 3301100020 B, Map revised August 23, 1999. The 10 year flood elevation for this location is approximately 227.5 feet. These elevations are based on the national Geodetic Vertical Datum of 1929 (NGVD 29). For the purpose of this petition, the more conservative 10 year flood elevation was used as the basis for design of the conductor clearance.
7. Using the above design criteria, the maximum sag of the non-supporting cable and minimum clearances for the crossing have been determined and designed as follows:
A. $0^{\circ} F$, Non-supporting cable - The maximum sag on the fiber optic cable under this condition is 26.0^{\prime}. The minimum clearance to land is 31.5^{\prime}. The minimum clearance to the 10 year flood level is 14.4^{\prime}.
B. $120^{\circ} \mathrm{F}$, Non-supporting cable - The maximum sag on the fiber optic cable under this condition is 24.2^{\prime}. The minimum clearance to land is 31.5^{\prime}. The minimum clearance to the 10 year flood level is 16.9^{\prime}.
C. $50^{\circ} \mathrm{F}$, Non-supporting cable - The maximum sag on the fiber optic cable under this condition is 23.1^{\prime}. The minimum clearance to land is 31.5^{\prime}. The minimum clearance to the 10 year flood level is 18.0^{\prime}.
8. There are no NHDES or NHDOT permits necessary specifically for the construction of this crossing.
9. The proposed crossing has been designed and will be constructed, maintained and operated by BayRing Communications, its affiliates and contractors.
10. BayRing Communications submits that the license petitioned for herein may be exercise without substantially affecting the rights of the public in the public water of the Merrimack River. Minimum safe line clearances above the water surface and affected shorelines will be maintained at all times. The use and enjoyment by the public of the Merrimack River will not be diminished in any material respect as a result of the overhead line crossing.

WHEREFORE, BAYRING COMMUNICATIONS respectfully requests that the Commission:
a. Find that the license petitioned for herein may be exercised without substantially affecting the public rights in the public water which are the subject of this petition;
b. Grant BayRing Communications a license to construct and maintain communication lines over and across the public waters of the Merrimack River in Concord, New Hampshire, as specified in the petition; and
c. Issue an Order Nisi and orders for its publication. Dated at Portsmouth the \qquad 1 day of April, 2010.

Respectfully submitted,
BAYRING COMMUNICATIONS
By Its Director of Operations

Director of Operations
BayRing Communications
359 Corporate Drive
Portsmouth, NH 03801
(603) 766-1000

Water Crossing Location

BAYRING CABLE SAG CHART Anstise cenmiction

Sheet 2 of 2
\square

Donny Pellitier
March 30, 2010
Outside Plant Manager
Bayring Communication
359 Corporate Drive
Portsmith NH, 03801-2888
Subject: Merrimack River Crossing Pole Loading
Dear Mr. Pellitier,
Attached are pole loading calculations for Poles CECO 50 and CECO 51 for the proposed Merrimack River crossing. The pole loading calculations were performed using Power line Technology, Pole Foreman software version 3.1.10. As identified on the attached Pole Loading Analysis Reports, the pole loading is within the limits of the pole and the attached guying.

To develop the pole loading analysis, certain assumptions were made as data could not be confirmed by Unitil. The existing guying and new Bayring Guy wire were modeled as $7 / 16$ EHS strand with a 1 to 1 lead to height ratio. Per Skip Zogopoulos, Unitil uses either $3 / 8^{\prime \prime}$ or $7 / 16^{\prime \prime}$ standard guy wire. The software rates the $7 / 16 \mathrm{EHS}$ strand for 18,720 pounds and Unitil rates their strand for 18,000 pounds so results are consistent. Additional assumptions were the tension for the Comcast Cable. Per Glen Fiore at Comcast they do not have records for the existing line tensions, they match the sag to the other utilities at the time of installation. Therefore the same tension as proposed for Bayring were used for the Comcast cable crossing the river.

As stated above it is assumed that 7/16" guy wires with a 1 to 1 lead to height ratio are installed. Unitil and Comcast will need to confirm the guying installed and leads on these poles and replace as needed to meet the new loading criteria. Bayring will also need to add a $7 / 16^{\prime \prime}$ guy attached at the proposed height.

Should you have any questions, or require additional information, please do not hesitate to call me.

> Sincerely,

Thomas O'Loughlin, PE
Principal Engineer

POLE LOADING DATA

Pole: 45/2

Pole Loading Horizontal: Vertical:	29%	(250B)	NESC Edition: 2007 Loading Distric: Heavy Construction: Grade B	Rule 250B Loading: Wind (psf): 4	Ice (in): 0.5

POLE LINE TOPOLOGY

PoleForeman - Pole Loading Analysis Report

License: Consulting Engineers Group

PoleForeman - Pole Loading Analysis Report
License: Consulting Engineers Group

POLE LINE TOPOLOGY

PoleForeman - Pole Loading Analysis Report

